Lecture 2

Relativistic Hamiltonian Formalisms

and

the Light-Front CQ Model

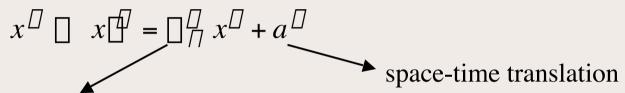
Basic reviews on relativistic quantum mechanics:

B.D. Keister and W.N. Polyzou: Adv. Nucl. Phys. 20 (1991) 225

F. Coester: Prog. Part. Nucl. Phys. 29 (1992) 1

relativistic formulations of quantum mechanics

invariance under Poincaré transformations between inertial coordinate systems:



Lorentz transformation (boost + rotation)

Theorem (due to Wigner): a quantum mechanical model formulated on a Hilbert space preserves probabilities in all inertial coordinate systems if and only if the correspondence between states in different inertial coordinate systems can be realized by a unitary ray representation $U(\prod, a)$ of the Poincaré group.

$$\left| \left\langle \Box \middle| \Box \right\rangle \right|^{2} = \left| \left\langle \Box \Box \Box \right\rangle \right|^{2} \qquad \qquad \left| \Box \Box \right\rangle = e^{i\Box} U(\Box, a) \left| \Box \right\rangle$$
unitary

group property:

$$U(\square_2, a_2) U(\square_1, a_1) = e^{i\square(2,1)} U(\square_2\square_1, a_2 + \square_2 a_1)$$

- # $U(\Box, a)$ contains the time evolution as a subgroup and therefore its construction is much more complicated than in the non-relativistic case
- # in non-relativistic quantum mechanics, the time evolution is decoupled from Galilean transformations among different inertial frames

 $U(\Box, a)$ depends upon the interaction

Poincaré group

10 hermitian generators:

- space-time translations: 4 generators \square P_i , H \longrightarrow $P^{\square} = (\vec{P}, H)$
- rotations: 3 generators \Box J_i

- rotations: 3 generators
$$\square$$
 J_i
- boosts: 3 generators \square K_i

$$J^{\square \square} = \begin{bmatrix} 0 & K_1 & K_2 & K_3 \\ \square K_1 & 0 & J_3 & \square J_2 \\ \square K_2 & \square J_3 & 0 & J_1 \\ \square K_3 & J_2 & \square J_1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
P^{\square}, P^{\square} \\
J^{\square \square}, P^{\square} \end{bmatrix} = 0$$

$$\begin{bmatrix}
J^{\square \square}, P^{\square} \\
\end{bmatrix} = i \left(g^{\square \square} P^{\square} \square g^{\square \square} P^{\square} \right)$$

$$\begin{bmatrix}
J^{\square \square}, J^{\square \square} \\
\end{bmatrix} = i \left(g^{\square \square} J^{\square \square} + g^{\square \square} J^{\square \square} \square g^{\square \square} J^{\square \square} \square g^{\square \square} J^{\square \square} \right)$$

two subsets of generators: kinematic and dynamic ones

the choice of the subsets defines the form of the dynamics

the subset of kinematic generators can be chosen to leave invariant:

the null plane
$$t + z = 0$$

$$\mathbf{x}^{\square} = \mathbf{0}$$

$$J_{\square}$$
 and P⁻ are dynamic 7 kinematic

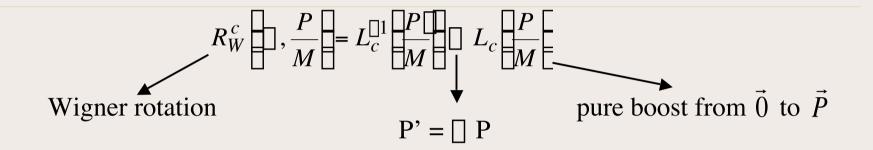
instant form

<u>front form</u>

point form

the three Dirac's forms

construction of U([], a) within the instant form:



group property:
$$U([], 0) = U[]_{c} U[]_{d} U$$

$${}_{c}\langle P \cline{\bigcap} J \cline{\bigcap} U \cline{\bigcap} U \cline{\bigcap} P; \cline{\bigcap} J \cline{\bigcap} D \clin$$

mass eigenstates

light-front boosts:
$$\vec{K}^f = \vec{K} \square \hat{z} \square \vec{J}$$

$$U(\square,0) = U L_f M U R_W^f, \frac{P}{M} U L_f^{-1} P$$

light-front Wigner rotation

connection between instant and light-front states:

$$|P; j \square\rangle_c = \sqrt{\frac{P^+}{P^0}} \square D_{\square\square}^j \square R_{fc} \square P \square P; j \square \Gamma_f$$

$$R_{fc} = \frac{P}{M} = L_f^{\Box 1} = \frac{P}{M} = L_c = \frac{P}{M} = \text{Melosh rotation}$$

light-front spin:
$$(0, \vec{j}_f) = \frac{1}{M} L_f^{\Box 1} = W$$

$$W^{\square} = \square \frac{1}{2} \square^{\square \square \square} P_{\square} J_{\square \square} = \text{Pauli} \square \text{Lubanski vector}$$

$$\left[j_f^a, j_f^b\right] = i \square^{abc} \ j_f^c$$

connection between spins in different forms:

$$\vec{j}_A = L_A^{\Box 1} \boxed{\frac{P}{M}} \boxed{L_B} \boxed{\vec{j}_B}$$
 A, B = c, f, p generalized Melosh rotation

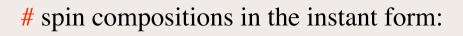
(momentum dependent)

N-particle systems: Bakamjian-Thomas construction

$$M_0 \square M = M_0 + V$$

the interaction V is inserted in the mass operator and commutes with the free operators \vec{P}_{free} , $i\frac{\partial}{\partial \vec{P}_{free}}$, \vec{j}_{free}

the Poincaré generators can be obtained from the free ones simply by substituting the free mass operator with the interacting one



$$\vec{J}_c = \vec{L} + \vec{S} = \prod_j \left(\vec{\ell}_j + \vec{s}_j \right)$$

in the front form: $\vec{J}_f \neq \vec{J}_c$

because of a momentum-dependent composition of spins

$$k_i = L_f^{\square 1}(P) \ p_i \square$$
 internal momenta $\lim_i k_i = 0$

$$\prod_{D_1 \cup D_2} D_{D_1 \cup D_1}^{s_1} \left[R_{fc}(k_1) \right] D_{D_2 \cup D_2}^{s_2} \left[R_{fc}(k_2) \right] \left\langle s_1 \cup_1, s_2 \cup_2 \mid SM_S \right\rangle \left| s_1 \cup_1 \right\rangle \left| s_2 \cup_2 \right\rangle$$

Melosh rotations

usual Clebsch-Gordan coefficient

Light-Front Formalism

light-front components of a four-vector: $p = (p^{\square}, \tilde{p}^{(LF)})$ $\tilde{p}^{(LF)} = (p^+, \vec{p}_{\square})$

$$p^{\pm} = p^{0} \pm \hat{n} \bullet \vec{p}$$

$$p \bullet q = p_{\square} q^{\square} = \frac{1}{2} \left(p^{\square} q^{+} + q^{\square} p^{+} \right) \square \vec{p}_{\square} \bullet \vec{q}_{\square}$$
unit vector

internal kinematic light-front variables:

$$P = \text{total momentum} \neq \prod_{j} p_{j}$$
 (independent of the interaction)
$$P = \text{total momentum} \neq \prod_{j} p_{j}$$

$$P^{\square} = \frac{M^{2} + |\vec{P}_{\square}|^{2}}{P^{+}} \neq \prod_{j} p_{j}^{\square}$$

$$P^{\square} = \frac{m_{j}^{2} + |\vec{p}_{j\square}|^{2}}{P^{\dagger}}$$

$$M = M_0 + V$$

free mass operator

Poincaré-invariant interaction

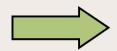
canonical 3-momentum

Poincaré invariance of V:

- V is invariant under spatial rotations
- V is independent on \vec{P}

1) Eigenstate of the total momentum of the system:

center-of-mass motion factorizes



no spurious effects

$$\square_{H} = \square^{CM} \left(P^{+}, \vec{P}_{\square} \right) \cdot \square_{H}^{(\text{int.})} \left(\square_{i}, \vec{k}_{i\square} \right)$$

Note: factorization is preserved by light-front boosts $\begin{bmatrix} R_w^f(L_f) = 1 \end{bmatrix}$

2) Relativistic covariance:

$$\prod_{(LF)}^{J\square} \left(\prod_{i}, \vec{k}_{i\square}; \prod_{i} \right) = \prod_{(LF)} \left(\prod_{i} \mid R^{+} \mid \prod_{(C)} \prod_{(C)} (\vec{k}_{i}; \prod_{(C)}) \right)$$

$$\prod_{i, \square_{i}} \text{': spin projections}$$

$$R^{+} = \prod_{j} R^{+}_{\text{Melosh}} \left(\prod_{j}, \vec{k}_{j\square}; m_{j} \right) \prod_{\text{spin}} \prod_{l \neq 2} \prod_{j} \frac{m_{j} + \prod_{j} M_{0} \left[|\vec{i}| - \hat{n} \left[|\vec{k}_{j\square}| \right] - \hat{m} \left[|\vec{k}_{j\square}| \right] \right]}{\sqrt{\left(m_{j} + \prod_{j} M_{0} \right)^{2} + \left| \vec{k}_{j\square} \right|^{2}}}$$

$$\Box_{(c)}^{J\Box}(\vec{k}_i;\Box\Box)$$
 = eigenfunction of the canonical angular momentum

$$\vec{J}_c = \vec{L} + \vec{S} = \prod_j \left(\vec{\ell}_j + \vec{s}_j \right)$$

3) Eigenstate of the mass operator:
$$M \square_{(LF)}^{(J\square)} = M_H \square_{(LF)}^{(J\square)}$$

- multiplying by R:
$$R M R^+ \Box_{(c)}^{(J\Box)} = M_H R R^+ \Box_{(c)}^{(J\Box)}$$

- canonical w.f.:
$$M_R \square_{(c)}^{(J\square)} = M_H \square_{(c)}^{(J\square)}$$

- Melosh-rotated mass operator: $M_R = R M R^+ = R M_0 R^+ + R V R^+$

$$M_0$$
 V_R

canonical w.f. satisfies a Schrödinger-like equation:

$$\prod_{i} \sqrt{m_i^2 + \left| \vec{k}_i \right|^2} + V_R \prod_{i=1}^{n} \mathcal{L}_{(c)}^{(J \square)} = M_H \mathcal{L}_{(c)}^{(J \square)}$$

OGE model, GBE model, ...

the eigenfunctions of CQ potential models able to reproduce hadron masss spectra can be used to construct relativistic CQ wave functions

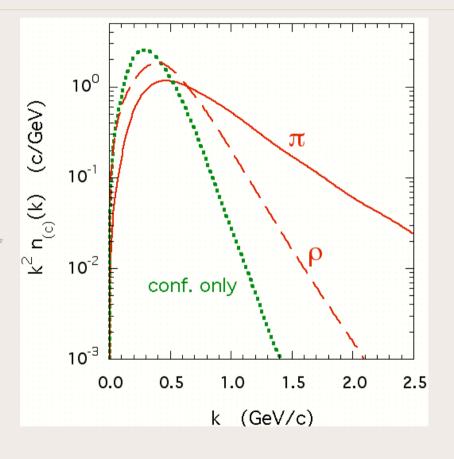
- reinterpretation of the canonical 3-momentum:

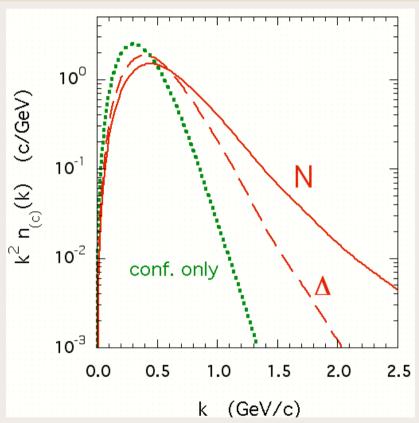
$$\vec{k}_{i} = \left(k_{in}, \vec{k}_{i\square}\right), \qquad k_{in} = \frac{1}{2} \left[\prod_{i=1}^{n} M_{0} \left[\frac{m_{i}^{2} + \left| \vec{k}_{i\square} \right|^{2}}{\prod_{i=1}^{n} M_{0}} \right] \right]$$

- unitary (Melosh) transformation:

$$n_{(c)}(k) = \frac{1}{2J+1} \prod_{\square=\square J}^{J} \prod_{\{\square_i\}} \left[\square d \square_{\vec{k}} \left[\square d\vec{k}_i \right] \square \left(\vec{k} \square \vec{k}_1 \right) \middle| \square_{(c)}^{J\square} \left(\vec{k}_i; \square_i \right) \middle|^2$$

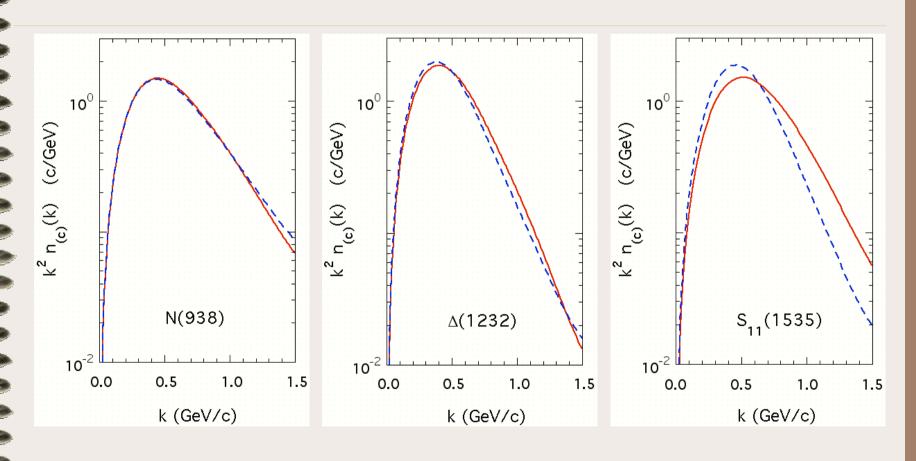
OGE model





large splitting at high momenta due to the spin-spin force [Rome group: '94, '95]

comparison between OGE and GBE wave functions



Electromagnetic Current Operator

Poincaré covariance: $U(\Box, a) I^{\Box}(x) U^{+}(\Box, a) = \left[\Box^{\Box 1}\right]^{\Box} I^{\Box}(\Box x + a)$

$$I^{\square}(x) = e^{\square i P^{\bullet} x} I^{\square}(0) e^{i P^{\bullet} x}$$

commutation rules:

$$\begin{bmatrix} J^i, I^j(0) \end{bmatrix} = i \square^{ijk} I^k(0), \qquad \begin{bmatrix} J^0, I^0(0) \end{bmatrix} = 0 \\
\begin{bmatrix} K^i, I^j(0) \end{bmatrix} = \square i \square^{ij} I^0(0), \qquad \begin{bmatrix} K^i, I^0(0) \end{bmatrix} = \square i I^i(0)$$

gauge invariance: $[P_{\square}, I^{\square}(0)] = 0$

$$I^{\square}(0) \prod_{j} I_{j}^{\square}(0)$$

- to know to what extent the e.m. properties of a system are governed by the e.m. properties of its constituents
- # problem: the full current operator must contain many-body terms due to the interaction (in any of the forms)

full current

one-body approximation

same results in all the forms

different results in different forms

!!! one important exception: the heavy-quark limit !!!

Which is the best form for the one-body approximation?

light-front at
$$q^+ = 0$$

in the **instant form** the one-body approximation cannot be formulated in a consistent way

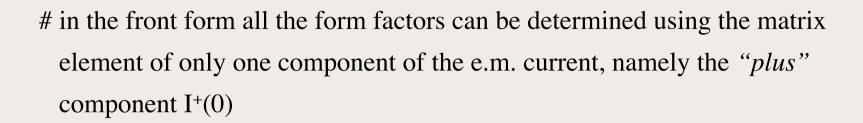
$$\left\langle P \square I^{\square}(0) \left| P \right\rangle \square \ \square _{j} \ \square \left[d\vec{p}_{\vec{j}} \right] \ \square \left[d\vec{p}_{j} \right] \left\langle P' \left| \left\{ \vec{p}_{\vec{j}} \right\} \right\rangle \left\langle \vec{p}_{\vec{j}} \right| I_{j}^{\square}(0) \left| \vec{p}_{j} \right\rangle \left\langle \left\{ \vec{p}_{j} \right\} \right| P \right\rangle$$

the matrix elements $\langle \vec{p}_j | I_j^{\square}(0) | \vec{p}_j \rangle$ are related each other by Lorentz boosts which are interaction dependent

in the **point form** the matrix elements of a subset of the components of the one-body approximation play a role in determining the form factors of the system

$$q^{2} < 0 \square q \text{ along } \hat{x}$$
 $q_{\square} \langle P \square I^{\square}(0) | P \rangle = 0 \square \langle P \square I^{x}(0) | P \rangle = 0$

But point form maximizes the impact of many-body currents



- nice feature:
$$(p \coprod p_i)^2 = q^2$$
 only when $q^+ = 0$

rotational invariance of the charge density: interaction-dependent constraint on the matrix elements of $I^+(0)$

angular condition for $J \ge 1$

the one-body approximation violates the angular condition

the form factors cannot be extracted in a unique way

Elastic Form Factor of the Pion

light-front wave function:

$$\square_{\square}^{(LF)} = \sqrt{\frac{A(\square, \vec{k}_{\square})}{4\square}} R^{(0)}(\square, \vec{k}_{\square}) w_{\square}(k) \qquad k = \sqrt{k_n^2 + |\vec{k}_{\square}|^2}$$

A: normalization factor

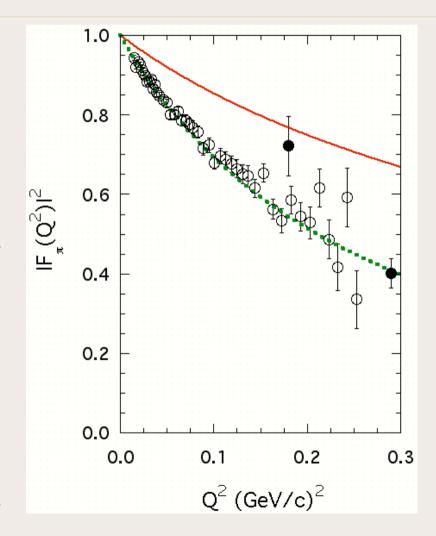
Melosh factor:
$$\left[R^{(0)} \left(\square, \vec{k}_{\square} \right) \right]_{\square \square} = \prod_{\square \square \square \square} \left\langle \square \square R_{q}^{+} | \square \right\rangle \left\langle \square \square R_{\overline{q}}^{+} | \square \right\rangle \left\langle \frac{1}{2} \square \square \frac{1}{2} \square \square 00 \right\rangle$$
$$= \frac{1}{\sqrt{2} M_{0}} \overline{u} \left(\tilde{p}_{q}, \square \right) \square^{5} v \left(\tilde{p}_{\overline{q}}, \square_{\overline{q}} \right)$$

matrix elements of the e.m. current: $\langle P \square I^{\square}(0) | P \rangle = (P \square P)^{\square} F_{\square}(Q^2)$

Breit frame at
$$q^+ = 0$$
: $F_{\square}(Q^2) = \frac{1}{2P^+} \langle P \square I^+(0) | P \rangle$ $Q^2 = \square q \cdot q$

point-like CQ's:
$$I^+(0) = \prod_j e_j \prod_j^+$$

[Rome group: '94]



— full OGE model

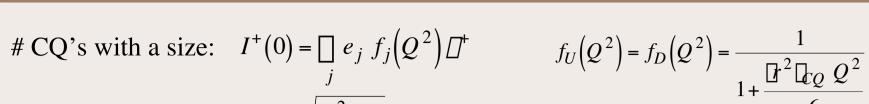
..... conf. only

O Amendolia et al.: '84, '86

Brown et al.: '73

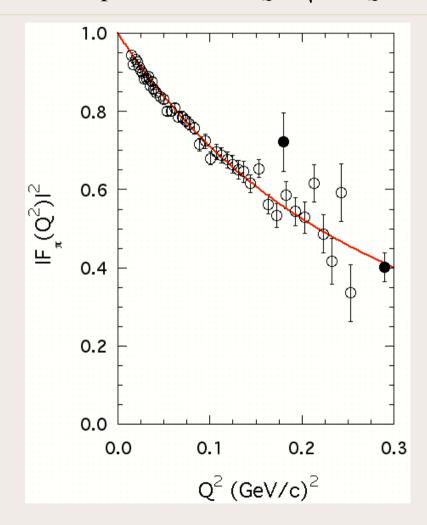
$$\boxed{r} \boxed{r} = \sqrt{\boxed{r^2} \boxed{r}} = 0.660 \pm 0.024 \text{ fm}$$

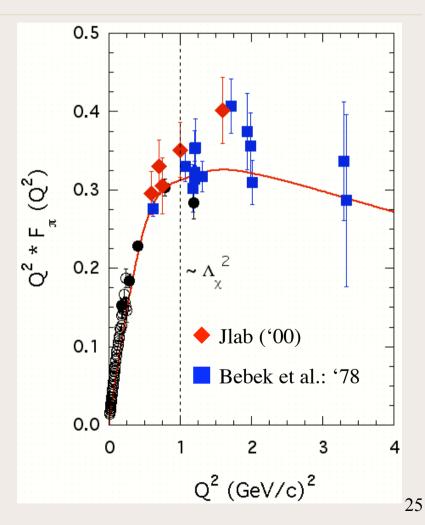
introduce a CQ size



- from pion radius: $r_{CQ} = \sqrt{\left[r^2\right]_{CQ}} = 0.45 \text{ fm}$

$$f_U(Q^2) = f_D(Q^2) = \frac{1}{1 + \frac{\square^2 \square_{Q} Q^2}{6}}$$





Elastic Form Factors of the Meson (spin-1 system)

light-front wave function:
$$\Box_{\square}^{(LF)} = \sqrt{\frac{A(\square, \vec{k}_{\square})}{4/\square}} R^{(1\square)}(\square, \vec{k}_{\square}) w_{\square}(k)$$

$$\text{Melosh factor: } \left[R^{\left(1 \, \square \right)} \left(\square, \vec{k}_{\square} \right) \right]_{\square \, \square} = \prod_{\square \square \, \square \, \square} \left\langle \square \, \square \, R_{q}^{+} \mid \square \right\rangle \left\langle \square \, \square \, R_{\bar{q}}^{+} \mid \square \right\rangle \left\langle \frac{1}{2} \, \square \, \frac{1}{2} \, \square \, \square \, 1 \, \square \right\rangle$$

matrix elements of the e.m. current:

$$\langle 1 \square | I^{\square}(0) | 1 \square \rangle = \square (P + P)^{\square} \square F_1(Q^2) e^* (\square) \bullet e(\square) + \frac{F_2(Q^2)}{2M_V^2} e^* (\square) \bullet q e(\square) \bullet q \square F_1(Q^2) + F_2(Q^2) [e^* \square (\square) e(\square) \bullet q \square e^{\square} (\square) e^* \square e^$$

- three form factors

$$e(\square)$$
 = polarization 4-vector

- charge form factor:
$$G_0(Q^2) = F_1(Q^2) + \frac{2 \square}{3} \left[F_1(Q^2) \square F_3(Q^2) \square (1+\square) F_2(Q^2) \right]$$

- magnetic form factor:
$$G_1(Q^2) = F_3(Q^2)$$
 $\Box = Q^2/4M_V^2$

- quadrupole form factor:
$$G_2(Q^2) = \frac{\sqrt{8} \square}{3} \left[F_1(Q^2) \square F_3(Q^2) \square (1+\square) F_2(Q^2) \right]$$

hermiticity and time-reversal symmetry: four independent matrix elements of $I^+(0)$

$$I_{11}, I_{1\square 1}, I_{10}, I_{00}$$

$$I_{\square \square} = \langle 1 \square | I^{+}(0) | 1 \square \rangle$$

angular condition:
$$\Box(Q^2) = (1 + 2\Box)I_{11}(Q^2) + I_{1\Box 1}(Q^2)\Box\sqrt{8\Box}I_{10}(Q^2)\Box I_{00}(Q^2) = 0$$

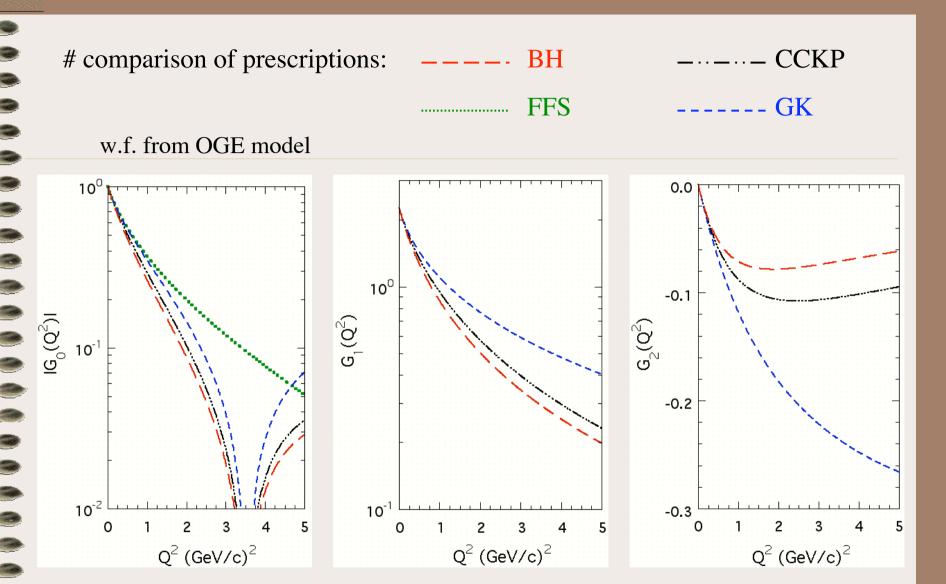


point-like CQ's: $I^+(0) = \prod_j e_j \prod_j^+$

— full OGE model

---- conf. only

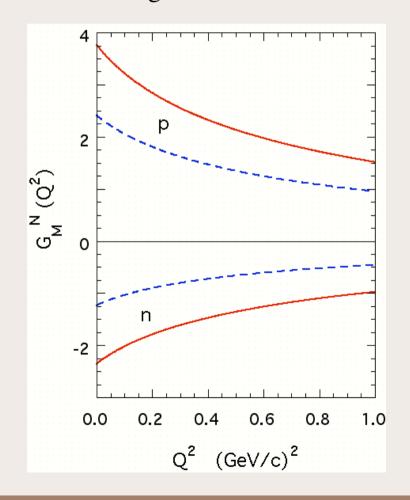
[Rome group: '95]



only magnetic and quadrupole moments are prescription independent

effects of the loss of rotational covariance can be manifest also in systems with J < 1 using different components of the e.m. current

nucleon magnetic form factors:



point-like CQ's:
$$I^+(0) = \prod_j e_j \square^+$$

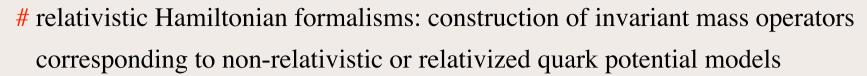
nucleon w.f. from OGE model

from I+

$$G_M^N(Q^2) = \frac{1}{2} \operatorname{Tr}_{\square}^{\square} + \frac{2M}{Q} i \square_y \square$$

from Iy

$$G_M^N(Q^2) = \Box \frac{P^+}{Q} \operatorname{Tr} \left[I^y \ i \Box_z \right]$$



reproduction of hadron mass spectra

relativistic wave functions constructed with appropriate spin compositions

light-front form: - maximum number of kinematic generators

- front boosts form a subgroup

$$-(p_i - p_i')^2 = q^2$$

loss of rotational covariance !!!

solution in the next lecture